Source code for miprometheus.models.mac.mac_unit

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# MIT License
#
# Copyright (c) 2018 Kim Seonghyeon
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# ------------------------------------------------------------------------------
#
# Copyright (C) IBM Corporation 2018
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
mac_unit.py: Implementation of the MAC Unit for the MAC network. Cf https://arxiv.org/abs/1803.03067 for the \
reference paper.
"""
__author__ = "Vincent Marois"

import torch
from torch.nn import Module

from miprometheus.models.mac.control_unit import ControlUnit
from miprometheus.models.mac.read_unit import ReadUnit
from miprometheus.models.mac.write_unit import WriteUnit
from miprometheus.utils.app_state import AppState
app_state = AppState()


[docs]class MACUnit(Module): """ Implementation of the ``MACUnit`` (iteration over the MAC cell) of the MAC network. """
[docs] def __init__(self, dim, max_step=12, self_attention=False, memory_gate=False, dropout=0.15): """ Constructor for the ``MACUnit``, which represents the recurrence over the \ MACCell. :param dim: global 'd' hidden dimension. :type dim: int :param max_step: maximal number of MAC cells. Default: 12 :type max_step: int :param self_attention: whether or not to use self-attention in the ``WriteUnit``. Default: ``False``. :type self_attention: bool :param memory_gate: whether or not to use memory gating in the ``WriteUnit``. Default: ``False``. :type memory_gate: bool :param dropout: dropout probability for the variational dropout mask. Default: 0.15 :type dropout: float """ # call base constructor super(MACUnit, self).__init__() # instantiate the units self.control = ControlUnit(dim=dim, max_step=max_step) self.read = ReadUnit(dim=dim) self.write = WriteUnit( dim=dim, self_attention=self_attention, memory_gate=memory_gate) # initialize hidden states self.mem_0 = torch.nn.Parameter(torch.zeros(1, dim).type(app_state.dtype)) self.control_0 = torch.nn.Parameter( torch.zeros(1, dim).type(app_state.dtype)) self.dim = dim self.max_step = max_step self.dropout = dropout self.cell_state_history = []
[docs] def get_dropout_mask(self, x, dropout): """ Create a dropout mask to be applied on x. :param x: tensor of arbitrary shape to apply the mask on. :type x: torch.tensor :param dropout: dropout rate. :type dropout: float :return: mask. """ # create a binary mask, where the probability of 1's is (1-dropout) mask = torch.empty_like(x).bernoulli_( 1 - dropout).type(app_state.dtype) # normalize the mask so that the average value is 1 and not (1-dropout) mask /= (1 - dropout) return mask
[docs] def forward(self, context, question, knowledge, kb_proj): """ Forward pass of the ``MACUnit``, which represents the recurrence over the \ MACCell. :param context: contextual words, shape [batch_size x maxQuestionLength x dim] :type context: torch.tensor :param question: questions encodings, shape [batch_size x 2*dim] :type question: torch.tensor :param knowledge: knowledge_base (feature maps extracted by a CNN), shape \ [batch_size x nb_kernels x (feat_H * feat_W)]. :type knowledge: torch.tensor :return: list of the memory states. """ batch_size = question.size(0) # expand the hidden states to whole batch control = self.control_0.expand(batch_size, self.dim) memory = self.mem_0.expand(batch_size, self.dim) # apply variational dropout during training if self.training: # TODO: check control_mask = self.get_dropout_mask(control, self.dropout) memory_mask = self.get_dropout_mask(memory, self.dropout) control = control * control_mask memory = memory * memory_mask # start list of states controls = [control] memories = [memory] # main loop of recurrence over the MACCell for i in range(self.max_step): # control unit control = self.control( step=i, contextual_words=context, question_encoding=question, ctrl_state=control) # apply variational dropout if self.training: control = control * control_mask # save new control state controls.append(control) # read unit read = self.read(memory_states=memories, knowledge_base=knowledge, ctrl_states=controls, kb_proj=kb_proj) # write unit memory = self.write(memory_states=memories, read_vector=read, ctrl_states=controls) # apply variational dropout if self.training: memory = memory * memory_mask # save new memory state memories.append(memory) # store attention weights for visualization if app_state.visualize: self.cell_state_history.append( (self.read.rvi.cpu().detach(), self.control.cvi.cpu().detach())) return memory